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Recently, we have drawn attention 
2 

to the fact that 

important role in determining the relative stabilities of 

complexes of 18-craun-6 derivatives which incorporate (i) 

Sheffield S3 7HF 

s tereochemi cal factors can play an 

both organic and metal cationic 

two c&-fused cyclohexane rings, 

(ii) two tmms-fused cyclohexane rings, and (iii) the methyl glycosides of the 4,6-0-benzyl- 

idene derivatives of P-glucose, Q-galactose, and I-mannose. Nowhere is the effect illustrated 

more dramatically in structural terms than with the trans-dsoid-trans (1) and tra+zs-trcmsoid- 

tmzs (2) isomers of dicyclohexano-18-crown-6. 3 Al though 1 is free to adop t4 the des i rab le 

“al I-gauche-OCH2CH20” conformation, 2 is denied this right because of configurational 

constraints. The denial to 2 of binding sites which act cooperatively’ provides2 an obvious 
-6 

explanation as to why it forms weaker complexes with metal cations than does 1. Unfortunat- - 

ely, we did not investigate the relative binding capacities of 1 and 2 tmards RNH + ions in - - 3 
our earlier work. 

6 
the avai I ab i 1 i ty 

7 of the bis-aa-glycoside-18-crcwn-6 derivatives 
8 

However, 

2,3:2’ ,3’-ao-P@-(j) , 2,3:3’ ,2 '-aa-n&(j) , 2,3:2’ ,3’-aa-BP-(z) and 2,3:3’,2-aa-@- with the 

trm-zs-tmnsoid-trans configuration provides an excellent opportunity to assess the importance 

of gross stereochemical features upon complexation of organic cations. 

Condensations (NaH/DMSO) of the previously reported’ dials a-e-($ and a-i-(z) with 

their derived di tosylates ” a-i-(S) and a-P-(s), respectively , gave the constitutionally 

isomeric b i s g 1 ucos i des ” 2,3:2’,3’-aa-PP-2, m.p. 229-230°, [alp + 50.2’(c 1.0, CHC13) and 

2,3:3’ ,2’-ao-p&-4, m.p. 233-234’, [aID + 36.6O(c 0.78, CHC13) and the constitutiona2Zy 

isomeric bisgalactosides 
11 

2,3:2l ,3’-&-#Q-5, m.p. 238-24D”, [a]D + 164’ (c 0.23, CHC13) and 

2,3:3’,2’-aa-@-6, m.p. 167-167.5$ [aID + 180’ (c 1.18, CHC13). -Constitutiona assignments -- 

to the isomeric compounds isolated frG both condensations were made on the basis of dynamic 

‘H n.m.r. spectroscopy in CD2C12 of 1:l complexes formed with PhCH2NH3+C104- (s).HC104 and 



466 No. 5 

0 f$JJ$ -*H 
’ 0 

6M* 

I 
1 

Ph 2,3:2;3’-aa-DD-3 

0 
H ;go~q 

0 
I 

+h 2,3:3:2’- aa-DD- 4 Ph 

OR 

a-D-2 R=H 

dh 

a-D-8 ft= Ts 

OR 

Ph 

A 
Ph 2,3;2:3’-aa-DD-5 

OMe 

I 

A 
Ph 2,3:3:2’-aCbDD-5 

, 
I 

Ph 

a-D-2 R=H 

Q-D-E R= TS 

Ph 

(RI- and (SI-PhCHMeNH3+C104- (RI-, and (SI-(2) .HCl04. Table 1 reveals that one of each of 

the bisglucoside and bisgalactoside crmns forms anisometric 
12 a- and B-complexes 13 (i.e. the 

complex ratios are not 1:l) and so these two isomers can be assigned to 2,3:2’,3’-au-EII-D_l and 

2,3:2’ ,3’-au-&~, respectively. In each case, the other bisglucoside and bisgalactoside 

crcwns form (see Table 2) degenerate i sometri c 
12 

complexes (i.e. a 1:l ratio is observed for 

certain hcmotopic ‘H n.m.r. probes in the crown) and so 2,3:3’,2’-au-ii-4 and 2,3:3’,2’-aa- - 

se-6 can be identified as the constitutional isomers of 2,3:2’,3’-aa-EII-j and 2,3:2’,3’-aa- 

&-z, respectively. 

On the basis of chemical shift data (Table 1) for the 1:l complexes (i) at +30° and (ii) 

at low temperatures for the benzylidene methine and anomeric protons, 
14 

we believe that the 

major complexes formed with 2,3:2’,3’-aa-!g-J and 2,3:2’,3’-aa-~~-~ are associated with the 

B-face. Our arguments are similar to those employed previously 13 with the related monoglyco- 

side crmns. Moreover , the observations are predictable from an examination of molecular 

models through fil a comparison of the numbers of oxygen atoms at the primary binding sites 

and (ii) the presence of secondary binding sites involving the 4,6-0-benzylidene rings in 

the bisglucoside crown. 
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Table 1. Temperature dependent ‘H n.m.r. spectral dataa and thermodynamic parameters For 

1:l complexation of the RNH3+Cl04- salts lJ.HClO4, fR)-E.HCl04, and fSl-~.HCl04 by the 

crOwns 2,3:2’ ,3’-a@-ii-2 and 2,3:2’ ,3r-aa-DD-5 with heterotopic faces. 
== 

Crown R 6 6 Complex A& b 
2 x Ph CH H-l ,l’ 

at 30’ 
ratio 

at 30° at To at To (T/‘C) 
(Maj +dMin) 

+0.3 kcal mol-* 
Maj Min Maj Min Maj :Min 

2,3:2’ ,3’- Ph CH2 5.56 5.65 5.62 4.87 4.86 5.08 74:26(-100) 10.4 
aa-DD-3 o fR)-PhCHMe 5.55 5.67 5.63 4.89 4.91 5.09 86:14(-105) 11.1 

== - fS)-PhCHMe 5.57 5.66 5.58 4.91 4.94 5.00 83:17(-105) 9.9 

2,3:2',3;- PhCH2 5.59 5.74 5.60 5.02 5.06 5.19 62:38 (-70) 12.4 
aa-DD-5 fR)-PhCHMe 5.61 5.72 5.58 5.01 5.09 5.17 74~26 (-90) 9.9 

== - fS)-PhCHMe 5.59 5.72 5.60 5.03 5.13 5.17 68:32 (-80) 12.5 

All spectra were recorded in (&Cl2 at 220 MHz on a Perkin Elmer R34 spectrometer with 

Me4S.i as “lock” and internal standa d. 
The free energies of activation J (A d) for dissociation of the 1:l complexes correspond to 
values calculated from the Eyring equation using rate constants determined by line shape 
analysis of the PhCH signal at a temperature close to coalescence in each case. 
Partial ‘H n.m.r. data (C at +30° : 6 5.51 (5, 2H, 2 X PhW), 4.78 (d, J = 3.5 Hz,, 

2H, H-1,1’), and 3.37 (s, 
Cl,) 
H, 2 x 0CH3). 

Partial 'H n.m.r. data (CD2C12) at +30° : 6 5.50 (5, 2H, 2 X PhW), 4.88 (d, J = 2.6 Hz, 
2H, H-1,1'), 4.30 (m, 2H, H-4,4'), and 3.40 (s, 6H, 2 x OCH3). 

Table 2. Temperature dependent ‘H n.m.r. spectral data” and kinetic and thermodynamic 

parameters for the 1:l complexes formed between RNH3+C104- salts lJ.HC104, II?)-g.HC104, 

and IS)-12.HC104 and the crowns 2,3:3’,2-au-Jj-4 and 2,3:3’ ,21-aa-~~-~ with haotopic faces. - 

Crwn R 
1 
H N’m’r’(6 at 30°) Av (‘C) ,-2 

+ob kcb + +0 3 b,o 

probes s-l AGcical*mol- 

2,3:3’ ,2;- 
ua- DD- 4 == - 

PhCH2 

(RI-PhCHMe 

Is) -PhCHMe 

2,3:3’ ,2;- 
*a-90-6 - 

PhCH2 

CR)-PhCHMe 

fG)-PhCHMe 

H-l ,l’ (4.88) 
2 x OCH3 I:.,";; 
H-1,1' 

2 x OCH3 @t;; 
H-1,1' 

2 X OCH3 (3138) 

2 x PhCH (5.60) 
H-l 1' 
H-4'4l ;?:08; 

2 x &H3 (3:44) 
2 x Phti ;;.;;; 

H-l ,I’ 
H-4,4’ (4148) 

2 x OCH3 (3.44) 
2 x Phti (5.60) 

-75 -80 : I:;:; 
-77 55 (-90) 
-88 la (-100) 
-85 51 (-100 
-92 13 (-100) 

-34 -32 2; I:;:; 
-32 37 (-90) 
-36 23 (-90) 

-73 -70 ;z I:;:; 

-70 -73 :: I:;:; 
-78 11.3 (-90) 

191 
71 

122 
40 
113 
29 

g 

51 
49 

:38 
47 
25 

9.4 

;:: 

3:: 
9.2 

12.0 
11.8 
11.9 
11.9 
10.0 
10.1 
10.1 
10.0 
10.0 

i See footnote U in Table 1. 
Abbreviations used are: 2’ coalescence temperature; Av, frequency separation of the 
appropriate ‘H n.m.r. pro&i with the temperature at which it was measured indicated in 
pa enthesis; kc, 

’ %!’ 

exchange 
free energy 

rate constant at T, calculated from the expression kc = nAv/2’; 
of activation calculated from the Eyring equation. 

V alue for AG+ ;c 

d dissocia:ion of 
can be equated directly with the free energy of activation (AGd) for 

‘the 1:l complexes. 
Partial H n.m.r. data (CD2Cl2) at +30° 
2H, H-1.1’)) and 3.39 (s, 6H, 2 x OCH ). 

: 6 5.50 (s, 2H, 2 x PhW), 4.79 (d, J = 3.5 Hz, 

e Partial H n.m.r. data (CD2Cl2) at +30° : 6 5.50 (5, 2H, 2 X PhCH, 4.89 (d, J = 2.6 Hz, 
2H, H-1,1’), 4.26 (m, 2H, H-4,4’), and 3.39 (s, 6H, 2 x 0CH3). 
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Finally and significantly, the Ka values for complexation of 2,3:2’,3’-aa-~&1, 

2,3:3',2 '-a~~@-~, 2,3:2’,3’-au-PP-5, and 2,3:3’,2’-au-pp-6 by Me CNH +SCN- -- - 

es ti mated15 

-- - 

to be ~50, ~50, 4650, and 5750 M-l, respectively. 
3 3 

in CDCI were 
3 

These results demonstrate 

convincingly that the configurational constraint- which leads to poor cooperativity of 

noncovalent bonds at the primary binding site- inposed upon al I these crowns has a drastic 

effect upon their complexing ability tcxtards organic cations. + 

(cf. ref. 13) “unchanged” in the 9.1 to 12.5 kcal mol 
-1 

Since AGd values remain 

range, this observation can only be 

explained in terms of very much 8Zower rates of association of organic cations with T8-crmn- 

6 derivatives when their conformational characteristics are “wrong” for complex formation. 

The message is clear. The formation of noncovalent bonds is a highly direct&ma2 process. 
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